Biochemistry, Chemistry
MASTER OF ARTS, MASTER OF SCIENCE

Students will gain a specialized body of knowledge that furthers their academic development, proficiency in laboratory techniques, and professional growth.

gradcollege.txstate.edu
Why choose Texas State?
Chemistry and biochemistry faculty have been recognized nationally and internationally for both stellar teaching and research. Students and faculty actively conduct cutting-edge research funded by the National Science Foundation, the U.S. DoD and the National Institutes of Health. The department is also home to the nationally-recognized Xiphophorus Genetic Stock Center.

Current students are recognized at international, national and regional levels through scholarships and research competitions. Graduates have been very successful in pursuing professional careers in medicine, pharmacy or doctoral education.

Course Work
The master of science (M.S.) degrees in chemistry and biochemistry are research degrees that normally require two years of full-time course work and research to complete. The degree requirements include 30 hours composed of 21 hours of lecture course work, three hours of departmental seminar, and six hours of thesis research support courses. The M.S. chemistry degree includes courses in organic chemistry, physical chemistry, analytical chemistry and elective courses. The M.S. biochemistry degree includes courses in enzymology, physical biochemistry, molecular biology and elective courses. The master of arts (M.A.) in chemistry has the same credit-hour requirement as the M.S., but a thesis is not required.
Department Mission

The department’s programs strive to provide students with a knowledge of chemistry and biochemistry as well as the process of conducting research. The programs further cultivate students’ ability to:

» perform both qualitative and quantitative laboratory procedures
» synthesize, purify, and/or characterize a variety of chemical/biochemical compounds
» search the scientific literature and accurately cite published information
» accurately and thoroughly describe experimental procedures
» critically evaluate and report experimental results
» interpret and solve problems in chemistry and biochemistry

Degrees Offered

» M.S. in Chemistry
» M.A. in Chemistry
» M.S. in Biochemistry
Faculty
As teacher-scholars equally devoted to both roles, department faculty are committed to maintaining and improving the quality of student instruction and have established a research program that emphasizes student involvement. Faculty also focus on grant support and publications and have fostered a service component that benefits the department, college, university, profession and community at large. Fields of research include: analytical, inorganic, organic, polymer and physical chemistry and chemical education, as well as protein biochemistry, biomaterials, molecular biology and biophysics.

Career Options
Upon graduation, students will be prepared for a variety of career paths, including positions in the following:

» environmental scientist  
» toxicologist  
» forensic scientist  
» science education  
» pharmaceutical sales representative  
» research assistant  
» industrial chemist  
» biomedical technician  
» analytical chemist
Important Deadlines*

Admissions
Priority Fall: February 1
Fall: April 1
Spring: October 1
Summer: No admission

Applications will continue to be considered on a space-available basis after the deadline.

Funding: Scholarships, Fellowships and Assistantships
Applications must be complete by the priority deadline to be considered for funding.

How to Apply
For information regarding admission requirements and submission instructions, please visit:
gradcollege.txstate.edu/apply

*International applicants can view specific deadlines and requirements at:
gradcollege.txstate.edu/international

For information on deadlines, admission requirements and funding, visit:
Biochemistry
gradcollege.txstate.edu/programs/biochemistry
Chemistry
gradcollege.txstate.edu/programs/chemistry
The chemistry and biochemistry graduate program builds confident scientists by creating an environment where students feel challenged, motivated and supported. The experiences the students have in the research laboratories allow them to strengthen their skills and abilities, ultimately preparing them for a successful future.

– Karolyn Barker, current M.S. Chemistry student at Texas State University